
Physics for Games - Code and Report

Overview
The idea behind this project is to demonstrate the effects of dynamic motion between multiple
balls in an enclosed space. I will create a box in which multiple balls will be released and
interact. One ball will demonstrate kinematics, and the others will use dynamic motion. The balls
will all be released at the same time with user input. These balls will be hard-coded into the
application as each ball will have different masses, radii and positions. The camera’s position
will be controlled with the WASD keys and the camera orientation will be controlled with the
mouse, allowing the user to view the simulation from any angle / distance they wish. Assets
such as textures will be streamed through into the project at runtime alongside fragment shader
snippets, which will be stored in a .txt file and accessed when in use. I will use Euler,
Runge-Kutta 2nd Order and Runge-Kutta 4th Order integrations.



Research
The most important aspect of the simulation was sphere to sphere collision, as it is the focal
point of the project. Online tutorials [(Haubold, 2021), (Mozilla, 2021)], have provided a good explanation
and demonstration. The collision works by detecting intersections between two spheres through
comparing their positions in space, and then applying impulse to them. This check for collisions
happens every tick, (or main loop iteration).

The application of impulse was also a key area of research, since we need to act on the
objects involved in the collision(s) and accurately display the outcome. “The impulse method
allows us to directly affect the velocities of the simulated objects which have intersected. This is
achieved through the application of an impulse, which can be thought of as an immediate
transfer of momentum between the two bodies” - [(2017 Tutorial 6 - Collision Response, 2021)].



This simulation sets the balls’ velocities to when travelling at a speed close to 0. This is because
the balls will continue to move slowly after the simulation has stopped.

To create the container I added 5 normals and matched their positions with 5 floor models. Each
wall is loaded separately. By hard coding each wall in its entirety instead of loading all of the
shaders in one block, then all of the textures in one block, etc; I am able to quickly and easily
amend a wall model without mistaking one for another.



Analysis
The container holding all of the balls for the simulation was created through the formation of 4
normals oriented around the centre of the scene along the y axis (rotations if each made a
square interior) Alongside this, another is placed below on the to act as the base of the box. The
wooden floor texture was used to be placed in the same position and rotation as the normals to
give off the impression of a solid box in 3D space that interacted with the balls.

Pressing the F key begins the simulation by changing a boolean value from 0 to 1,
which, due to being checked in a loop, triggers the other physics routines to begin. The balls are
given hard-coded positions on runtime as well as velocities on the start of the simulation, so
they have different movements through each axis upon pressing F.

Evaluation
By confining the balls to such a small space, I have successfully demonstrated the collision and
impulse of multiple objects. Interacting with both other balls and the walls that create the bounds
of the box, the physical reactions are lifelike. To improve upon the simulation, I would take a
closer look at the balls reaching / having reached rest. Currently when they reach a velocity of 0,
they vibrate and begin to clip through the surface normal. By resolving this issue, the application
would reach a genuine finish as the current vibrations have the possibility of starting an impulse
reaction out of nothing, breaking Newton’s first and third laws [(Newton’s Laws of Motion | Glenn Research

Center | NASA, 2021)].

References

Haubold, L., 2021. NeHe Productions: Collision Detection. [online] Nehe.gamedev.net. Available at:
<http://nehe.gamedev.net/tutorial/collision_detection/17005/> [Accessed 5 May 2021].

Developer.mozilla.org. 2021. 3D collision detection - Game development | MDN. [online] Available at:
<https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection> [Accessed 5 May
2021].

2021. 2017 Tutorial 6 - Collision Response. 1st ed. [ebook] ncl, p.2. Available at:
<https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/previousinformation/physics6collision
response/2017%20Tutorial%206%20-%20Collision%20Response.pdf> [Accessed 21 May 2021].

Glenn Research Center | NASA. 2021. Newton’s Laws of Motion | Glenn Research Center | NASA.
[online] Available at:
<https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/newtons-laws-of-motion/> [Accessed 21 May
2021].


