

Faculty of Science and Technology

BSc (Hons) Games Software Engineering

May 2022

Utilizing Multiple Procedural Generation Techniques to Construct Organic 2-Dimensional

Levels

by

Joseph Skinner

DISSERTATION DECLARATION

This Dissertation/Project Report is submitted in partial fulfilment of the requirements

for an honours degree at Bournemouth University. I declare that this Dissertation/

Project Report is my own work and that it does not contravene any academic offence

as specified in the University’s regulations.

Retention

I agree that, should the University wish to retain it for reference purposes, a copy of

my Dissertation/Project Report may be held by Bournemouth University normally for a

period of 3 academic years. I understand that my Dissertation/Project Report may be

destroyed once the retention period has expired. I am also aware that the University

does not guarantee to retain this Dissertation/Project Report for any length of time (if

at all) and that I have been advised to retain a copy for my future reference.

Confidentiality

I confirm that this Dissertation/Project Report does not contain information of a

commercial or confidential nature or include personal information other than that which

would normally be in the public domain unless the relevant permissions have been

obtained. In particular, any information which identifies a particular individual’s

religious or political beliefs, information relating to their health, ethnicity, criminal

history or personal life has been anonymised unless permission for its publication has

been granted from the person to whom it relates.

Copyright

The copyright for this dissertation remains with me.

Requests for Information

I agree that this Dissertation/Project Report may be made available as the result of a

request for information under the Freedom of Information Act.

Signed: JSKINNER

Name: Joseph Skinner

Date: 20 / 05 / 22

Programme: BSc GSE

TABLE OF CONTENTS

Faculty of Science and Technology ... 1

Table of Figures .. 1

Acknowledgements ... 2

Abstract... 3

Introduction and Rationale .. 4

Aims and Objectives ... 5

Generic Conventions of the Survival Genre .. 6

Review of Literature: Procedural Generation Techniques ... 7

Noise Algorithms: Perlin vs Simplex vs Worley .. 7

Cave Generation: Cellular Automata vs Random Walk .. 8

Literature Review Conclusion .. 9

Methodology ... 10

Planning... 10

Software .. 11

Graphical Aesthetic and Use of Third-Party Assets .. 11

Game Flow and Design ... 12

Menu Flow .. 12

Implementing Perlin Noise ... 13

Generating Noise .. 13

Translating Noise to Tile Map ... 15

Optimising Biome Settings .. 16

Seeds ... 16

Island Mask .. 17

Final Results ... 18

Resource Distribution ... 19

Implementing Cellular Automata .. 20

Developing Cellular Automata .. 20

Implementing the Player .. 24

Player Controller ... 24

Gameplay Mechanics .. 26

Items .. 26

Inventory... 26

Crafting ... 28

Building .. 30

Artificial Intelligence ... 31

Artificial Intelligence Model ... 31

Algorithms and Representations ... 32

Implementation of AI ... 32

Menus .. 35

Soundtrack .. 36

Music .. 36

Sound Effects and Audio Groups ... 36

Procedural Demonstrations.. 38

Critical Reflections .. 39

Testing ... 39

Feedback.. 39

Improvements ... 40

Evaluation ... 41

Limitations ... 41

Educational Take-aways .. 41

Further Improvements .. 41

Final Comments ... 42

Screenshots .. 43

Feedback Answers .. 48

References ... 50

Appendix ... 53

Third Party Assets ... 53

Graphical Assets .. 53

Sound Effects ... 53

1

TABLE OF FIGURES

Figure 1 - Concept Art for Terrain Generation ... 5

Figure 2 - Minecraft (Mojang, 2009) .. 6

Figure 3 - World Render (Terraria, 2011) .. 6

Figure 4 - Example of a colour map generated by Perlin Noise (Scher, 2017) 7

Figure 5 - Stefan Gustavson example of the application of Worley Noise) 8

Figure 6 - Example of a cave generated with the Random Walk Algorithm (James, 2020) 8

Figure 7 - A Cave Generated Using CA (Cook, Colton, Gow and Smith, 2019)) 8

Figure 8 - Project Plan Showing the Stages of Development to Create a Survival Game. ... 10

Figure 9 - Example Image from Asset Pack (Pita, 2018) ... 11

Figure 10 - MDA Diagram of hosTILE ... 12

Figure 11 - hosTILE Menu Flow Diagram (Lucidchart) .. 12

Figure 12 - Code Snippet producing Perlin Noise .. 13

Figure 13 - Code Snippet Translating Noise Map to Colour Map ... 14

Figure 14 - Perlin Noise Generation Stage 2 ... 14

Figure 15 - Perlin Noise Generation Stage 1 ... 14

Figure 16 - Code Snippet Translating Colour Map to Tile Map .. 15

Figure 17 - Perlin Noise Generation Stage 3 ... 15

Figure 18 - Table to Show Biome Data ... 16

Figure 19 - Square Gradient (Travall, 2018) .. 17

Figure 20 - Code Snippet Showing the Square Gradient Algorithm 17

Figure 21 - Step-By-Step Process to Generate a Perlin Island .. 18

Figure 22 - Perlin Noise Island Generation and a Real-World Desert Island (Ahmed, 2018) 18

Figure 23 - Snippet from Resource Distribution Program (Trees) .. 19

Figure 24 - Far and Near Shots After Resource Distribution.. 19

Figure 25 - Example of Conway's Game of Life (Bettilyon, 2018) .. 20

Figure 26 - Symmetrical Von Neumann, hexagonal and Moore neighbourhoods in two

dimensions (García-Morales, 2012) .. 20

Figure 27 - Code Snippet for Birth and Death Rates ... 21

Figure 28 - CA Iteration 3 .. 22

Figure 29 - CA Iteration 1 .. 22

Figure 30 - CA Iteration 2 .. 22

Figure 31 - CA Iteration 4 .. 22

Figure 32 - Example of CA and Resource Population ... 23

Figure 33 - hosTILE Player Character ... 24

Figure 34 - Code Snippet Showing Player Vitals and Animation Conditions 24

https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727831
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727832
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727833
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727834
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727835
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727836
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727837
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727838
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727839
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727840
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727841
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727842
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727843
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727844
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727845
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727846
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727847
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727849
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727850
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727851
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727852
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727853
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727854
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727855
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727856
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727856
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727857
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727858
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727859
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727860
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727861
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727862
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727863
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727864

2

Figure 35 - Code Snippet to Pick Up Wood ... 25

Figure 36 - hosTILE Game HUD ... 26

Figure 37 - In-Game Screenshot of the Inventory Menu .. 27

Figure 38 - Code Snippet for Crafting .. 28

Figure 39 - Table Showing Crafting Resources and Locations .. 29

Figure 40 - Table Showing Craftable Items and Their Uses .. 29

Figure 41 - In-Game Look at the Crafting Menu .. 29

Figure 42 - Code Snippet for Highlighting Tile Cells .. 30

Figure 43 - Screenshot of Build Mechanic ... 30

Figure 44 - Table to Show AI behaviours .. 31

Figure 45 - The AI Model (Millington and Funge, 2009) ... 31

Figure 46 - Passive Crab Agent .. 32

Figure 47 - Code Snippet Showing Agent Movement to a New Position 33

Figure 48 - Code Snippet Showing How the Random Position was Calculated 33

Figure 49 - Slime Enemy .. 33

Figure 50 - Code Snippet of Predator Movement .. 34

Figure 51 - hosTILE Main Menu .. 35

Figure 52 - Code Snippet for Audio Settings ... 37

Figure 53 - Chart to Show Audience Reception for the Alpha .. 39

Figure 54 - Chart to Show Audience Reception of the Level Generation 40

Figure 55 - Screenshot of hosTILE Gameplay .. 43

Figure 56 - Perlin Island Example 2 .. 43

Figure 57 - Perlin Island Example 1 .. 43

Figure 58 – Rule Tiles Setup ... 44

Figure 59 - Code Snippet to Generate Shallow Water Biome and Resources 44

Figure 60 - Code Snippet to Generate Beach Biome and resources 45

Figure 61 - Code Snippet to Generate Grassland Biome and Resources 46

Figure 62 - Code Snippet to Show AI Spawner Functionality .. 47

Figure 63 - Code Snippet Showing the Cellular Automata Resource Generation 47

Figure 64 - Table to Show Which Games hosTILE Resembles ... 48

Figure 65 - Table to Show Opinions on the Game's Aesthetic Fitting the Genre's

Conventional Image .. 48

Figure 66 - Table to Show the Opinion on the Size of the Island(s) 49

https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727865
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727866
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727867
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727868
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727871
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727872
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727873
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727875
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727876
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727877
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727878
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727879
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727880
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727881
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727882
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727883
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727884
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727886
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727887
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727888
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727889
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727890
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727891
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727892
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727893
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727894
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727895
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727895
https://d.docs.live.net/c6da39796e6ff00d/Documents/University/YEAR%203/Dissertation/Dissertation.docx#_Toc103727896

2

ACKNOWLEDGEMENTS

Dedicated to my Gran Jen, who inspired me every day to be the best version of myself.

Thank you to my friends and family for supporting my research and participating in my

qualitative research.

Primary Supervisor:

Simant Prakoonwit

BEng, MSc, PhD, DIC, MIEEE, MIET, FHEA

Associate Professor

Dept of Creative Technology, Faculty of Science and Technology

Secondary Supervisor:

Wen Tang

BSc, PhD, PGCE, MITE

Professor

Dept of Creative Technology, Faculty of Science and Technology

3

ABSTRACT

“The pinnacle of game design craft is combining perfect mechanics and compelling fiction

into one seamless system of meaning.”

(Sylvester, 2013)

Procedural Content Generation (herein referred to as PCG) has become a regularity in recent

years. With such games as Minecraft and Terraria providing potentially endless replayability

through the technique, it brings into question whether PCG will become the industry standard.

This portfolio project develops a survival game using Unity Engine that demonstrates the use

of PCG to generate organic, top-down 2-Dimensional levels. Multiple techniques will be used

in tandem to produce the game. The Overworld will be generated using Perlin Noise, and the

caves will be formulated through several passes of Cellular Automata. These levels are

populated with scenery and AI creatures for the player to interact with. The player can harvest

resources, attack, and evade enemies, build structures, as well as craft useful items for their

journey. All music has been composed specifically for the game by the writer.

Key milestones of the development process were evaluated, with self-reflection being used to

refine the mechanics and gameplay. Later builds were released to participants to provide their

own opinions and comments. The project’s end state is a completed game, the written

dissertation that includes user feedback.

The writer has challenged themselves to completing this project as a way of exercising all their

skills as a game developer as well as demonstrating the ability to deliver large pieces of work

within a set time-frame.

4

INTRODUCTION AND RATIONALE

In this portfolio project, the writer will develop a top down 2-dimensional survival game that

utilises methods of PCG to generate the levels. They will examine the industry standard

methods of PCG and review which techniques align best with the game’s concept. Alongside

this they will read into the generic conventions of the survival genre to implement the most

pertinent features that encourages player immersion.

At the click of a button, games that utilise PCG features can generate an entire area of play

space for the player to explore and interact with. If adapted and fine-tuned to suit the

developer’s desired aesthetic quality, this method can be a powerful tool that can save a lot of

time and bring focus onto other segments of the game’s creation. The aim of this project is to

create a single-player survival game (provisionally titled, hosTILE) in which the player is

thrown into a procedural world and forced to explore their surroundings, fend off against

threats, and gather the resources necessary to escape.

As a Games Software Engineer, the writer’s area of expertise is focused primarily on the

programming and algorithmic side of game development. Being the lone developer on this

project means that they cannot use time as an expendable resource to work on the level

design and implementation of a large-scale survival level. Due to this, a PCG tool would be

an excellent way to solve the looming problem others have in a similar situation, which is the

creation of realistic, large-scale levels. Assigning the heavy lifting to the processor at runtime

leaves me with time to refine and perfect the game mechanics which occur within these levels.

Within the games industry, there are many algorithms to produce procedural content, each of

which having their own sets of advantages and disadvantages. For major companies or those

working within strict timeframes, PCG can streamline the process of building levels, texturing

models, or animations, and so reading into the subject will provide many advantages in the

future of game development. The methods pursued in this paper are Perlin Noise for the

overworld, and Cellular Automata for the caves. They both provide different visual outputs that

are perfect for the scenarios in which they will be used. Perlin Noise creates expansive areas

of terrain that can accommodate a multitude of biomes, whilst Cellular Automata creates

snaking caverns that interconnect with one another. These two methods are not the only

algorithms out there, however, and the review of literature will compare them against other

worthy techniques like Worley Noise, Random Walk and Simplex Noise.

As stated previously, the aim is to create a survival game. During each significant step in the

game’s development the writer will release a build to a few select colleagues and friends to

understand where the project’s strengths and weaknesses lie. Testing is imperative in a

game’s development because positive audience reception and feedback provides data as to

how to improve the product. Judging the success of a game alone is bad practise for future

endeavours and will commonly leave the game feeling unpolished and, in some cases, not

enjoyable.

5

AIMS AND OBJECTIVES

The aim of this portfolio project is to utilise PCG to create a survival game, that uses the

techniques of PCG so that a near infinite number of possible levels can be created. The game

mechanics will allow the player to explore the level, harvest materials and resources, craft

better equipment and enter conflicts with the NPC creatures that wander the play-space.

There are several objectives that are required to reach this goal, which upon compilation will

result in a completed game. These are:

• Quantitative research on PCG

• Research and implement a method to generate Perlin Noise and Cellular

Automata

• Populate the world with resources

• Implement player mechanics

• Implement AI mechanics

• Implement items and functionality

• Beta Testing / Qualitative Research

Figure 1 - Concept Art for Terrain Generation

6

GENERIC CONVENTIONS OF THE SURVIVAL GENRE

Survival games have been defined by Plarium.com (2019) as “those in which you face off

against a hostile environment in what is generally an open world, often starting with only

meagre equipment, supplies and limited inventories”. Linguazza.com (2014) builds upon this

definition by adding, “Many survival games are based on randomly or procedurally generated

persistent environments”. These procedurally generated worlds often mean that every

playthrough of the game is drastically different. The player starts with nothing (or next to

nothing) and must utilise the natural resources provided by the local habitat to obtain

nourishment or better equipment.

For most titles within this genre, there is no defined end state. Instead, they take on a sandbox

approach, in which the world is given to you, and is yours to manipulate and explore as you

wish. The best-known example of this is Minecraft, where, although there are “quests” for the

player to partake in, their completion does not decisively end the game. This idea will be taken

into account and the gameplay will be based more on discovery and survival but will also have

an end-game state where the player can build a boat to escape the island.

These conventions are a necessity for the project to be considered a survival game, so to

begin the writer will research into the industry standard methods of PCG to create the world(s)

of the game, before moving on to building the individual mechanics that will compile into the

playable experience.

Figure 2 - Minecraft (Mojang, 2009)

Figure 3 - World Render (Terraria, 2011)

7

REVIEW OF LITERATURE: PROCEDURAL GENERATION TECHNIQUES

NOISE ALGORITHMS: PERLIN VS SIMPLEX VS WORLEY

In the context of a survival game, the terrain generation techniques are vital. Players will not

feel as immersed in a world that is plain and / or repetitive, therefore this project will have a

heavy emphasis on PCG methods to ensure that this does not happen. By relinquishing all

control over the level for the system to handle both reduces production time and also provides

a replayability factor that is not present with hand crafted, single levels (The Pros and Cons of

Procedural Generation, 2022). Minecraft for example, uses a mixture of Perlin Noise and

Perlin Worms when generating both the open spaces and the underground. This noise map

is then given an additional feature to it that can better assign and spread the biomes, such as

moisture or heat maps that reference real-world environmental models (Himite, 2021). For

example, If the terrain height is low and the moisture level is minimal, the land will be generated

as a desert.

Perlin Noise is a very popular example of PCG. It is a procedural texture primitive that was

developed by Ken Perlin as “A source of smooth, random noise” as he found generic random

noise to be unfitting for some of its potential applications (Parberry, 2014). By defining a grid

where every integer position in 3D space (Green, 2022) has a pseudo-random gradient vector,

you can produce a render texture on which the shade of each pixel, going from 0 to 1, can

represent the height map of a terrain topology. There does exist an alternative algorithm that

is believed by many to be an improvement over Perlin Noise known as Simplex Noise. Again,

developed by Ken Perlin in 2001, it addressed some of the issues that his original design had,

such as its high computational complexity at the higher dimensions:

Figure 4 - Example of a colour map generated by Perlin Noise (Scher, 2017)

8

O(n2) in n dimensions instead of the O(n2^n) of Perlin Noise (Perlin vs. Simplex, 2022).

Other methods of noise generation were

considered as well. Worley noise is a primitive

that produces good outputs, but said results

are more fitting for biological modelling.

Figure 5 shows an example of Worley Noise

and its appearance is cell-like, which is not

suited for the aim of this project. As mentioned

by Gonzalez Vivo and Lowe (2022), Worley

Noise has it’s uses most prominently in the

graphics and texturing community, and

therefore would not produce results

appropriate for that of the survival genre.

Perlin Noise has a lot of uses in games and

other graphical areas but falls short when

regarding cave generation. This is where

cellular automata will come into play. “A

cellular automaton consists of an nth

dimensional grid with a number of cells in a

finite state and a set of transition rules. Each cell of the grid can be one of several states; in

the simplest case, cells can be on or off” (Pedersen, 2014). With this in mind, we have an

opportunity to assign a set of predetermined rules to these cells to produce cave-like tunnels

and open spaces.

CAVE GENERATION: CELLULAR AUTOMATA VS RANDOM WALK

Cellular Automata (herein referred to as CA) are abstract computational systems that use
discrete steps to “evolve” (Cellular Automata (Stanford Encyclopaedia of Philosophy), 2017).
The idea of CA was developed in the 1950s by multiple independent sources, but the most
notable pioneer of the algorithm was John von Neumann, who endeavoured to create an
abstract model of biological reproduction (Wolfram, 2002). The nature of CA means that they

Figure 5 - Stefan Gustavson example of the application of

Worley Noise)

Figure 7 - A Cave Generated Using CA (Cook,

Colton, Gow and Smith, 2019))

Figure 6 - Example of a cave generated with the

Random Walk Algorithm (James, 2020)

9

can be used to model complex and life-like outcomes, and within the context of game
development, are perfect for generating scenes such as mazes and caves. The state of the
cells can determine its role. If it is 1, then it is a wall, if it is 0, then it is open space, etc (see
Figure 7). Random Walk algorithm is a procedure in which a defined number of randomly
moving objects wander from their start position (Schmidt, 2022). The agents’ movement is
completely random, and by tracing their positions as time goes on the developer can produce
a cave-like system. Unlike cellular automata, the use of RW guarantees that all pathways are
accessible. Due to the nature of the algorithm, levels are generated using step limiters instead
of a grid of defined size. This means that you cannot exactly control the size of the level
produced as for the most part the agents will be moving back to positions, they have visited
previously. This is likely to result in small levels that have little room to distribute natural
resources. For a survival game where the theory of game balancing is vital, this is not a good
approach.

LITERATURE REVIEW CONCLUSION

Perlin Noise has ultimately been chosen over Simplex Noise because of three reasons. First,

the world will be generated in its entirety at the start of runtime. This means that the algorithm

halts before the player is introduced to the environment. The second reason is that the

algorithm will only be generating in 2 dimensions, meaning that Perlin Noise’s computational

complexity will not have a noticeable effect on the gameplay. Simplex is much more

computationally efficient as you increase the dimensions of noise. Since the game is 2

dimensional, these attributes do not need to be considered. The final reason is the writer’s

opinion. Perlin Noise’s gradients are far more fitting for a natural environment, and so the

implementation of such has been chosen. With the proposed level being a sparse and

contained island, Perlin’s biome generation method also organically separates the habitats to

simulate their real world equivalents. It is unusual to find an island with a clear and obvious

division between eco-systems, such as those produced with Worley Noise.

The project will use cellular automata in the generation of the caves ultimately due to its

computational cost and the more interesting environments produced through the procedure.

The use of CA also results in larger play-spaces, as it references and uses the defined

dimensions of a grid compared to counting steps that are highly likely to go back on

themselves multiple times. This can be seen in figure 6, where the cave-like structure

generated is small in comparison to the surrounding area it could potentially fill. Also, these

levels are being generated for use in the context of a survival game, therefore the narrow

pathways and chaotic design of RW are not suited for player traversal and will confine all

action through these avenues. This is poor game design and limits the choices a player has

when it comes to enemy encounters, increasing the difficulty in these scenarios as well as

removing aspects of meaningful play. Meaningful play is the relation between player action

and the resulting outcome(s) due to them (Muñoz-Avila, n.d.). Restricting the play area

translates to removing action possibilities from the player, taking away from the game

experience

There is one drawback to CA against RW, and that is that some generated areas are

inaccessible. This issue can be in a way corrected through optimising the birth and death rates

of the cells, promoting growth over decline, however it is not guaranteed that a produced level

will not carry any issues. Considering the aesthetic appearance of the entire system, however,

makes the levels feel much more natural compared to RW.

10

METHODOLOGY

PLANNING

There are 3 stages to this project development:

1. Implement procedural generation algorithms

2. Create the game loop and mechanics

3. Test the game and use feedback to improve it

The GANTT chart above was produced following the agile development methodology. This

approach selects one objective to be focused in a “sprint”, where the objective is completed

within a set time frame. The terrain generation tools will be worked on first before the gameplay

mechanics development begins. This has advantages as this area of the project is estimated

to be the costliest in terms of time and research which means that completing this sooner will

reduce the weight of any crunch developing nearing the project’s completion. Secondly, having

steady and reliable generation framework eases the advancement of the mechanics because

there is a solid level in which to test and evaluate each step. Note that the writing of this

document is worked on concurrently to the project.

Figure 8 - Project Plan Showing the Stages of Development to Create a Survival Game.

11

SOFTWARE

The game will be developed using Unity 2019.4.14f1 due to the writer’s experience with the

IDE and their proficiency using c# programming language. Unity offers many tools and utilities

that would take a significant amount of time to develop from scratch if one was to create an

entirely self-made engine. This allows a developer to focus on the design and implementation

of the game over the construction of the engine, saving valuable time and expendable

resources as well as focusing efforts on the project at hand.

GRAPHICAL AESTHETIC AND USE OF THIRD-PARTY ASSETS

The game’s graphics will consist of 16x16 sprites and tile sheets. These graphics are taken

from the same creator to keep aesthetic congruence [see Third Party Assets Section in

Appendix]. The tile sheet includes different types of water, beach and sand tiles, grassland

variations, and mountains. Pixel sprite art was chosen due to its simple and friendly

appearance. The objects are clearly visually defined, and the landscape can transition from

one habitat to the next (see Figure 9).

Figure 9 - Example Image from Asset Pack (Pita, 2018)

12

GAME FLOW AND DESIGN

The idea of this project is for it to be a short, simple survival game, that can be played through

to completion within 30 minutes. The overworld will be large and diverse enough that the

player is encouraged to explore. The caves are single-room levels embedded within the

overworld and will be full of winding paths and more hostile NPC creatures. To complete the

game (if they wish), the player must search every part of the island to gather the necessary

resources to build a raft and escape.

MENU FLOW

Figure 11 - hosTILE Menu Flow Diagram (Lucidchart)

Figure 10 - MDA Diagram of hosTILE

13

IMPLEMENTING PERLIN NOISE

GENERATING NOISE

Unity Engine has a built-in Perlin Noise Function that is utilised within this project. It is used to

streamline the development process of the game.

Every cell in the grid is assigned a pseudo-random number, meaning that the value 0-1 is

random yet its magnitude remaining relatively close to that of the values around it. Without the

use of pseudo-random numbers, the resulting image would be a mess of random coloured

pixels, and the resulting terrain would have no natural flow or congruency. These numbers are

then interpolated using rules that are set within the script.

Each cell’s gradient is then used to shade the corresponding pixel on the render texture. The

outputted image shows smooth transitions from white to black. Although it is greyscale, the

result is open for further manipulation. Perlin Noise uses “octaves”, which are functions that

determines the level of detail produced in the noise map by layering multiple fractals (World-

Machine.com, 2022). In this project, the optimum number of octaves is 6. Now that the noise

map has been produced the next step is to introduce boundaries that separate the heights

into biomes. Using the Unity Editor functionality, the Perlin Noise script can be changed into

an interactive tool that can organise the height boundaries. This example has the lowest

Figure 12 - Code Snippet producing Perlin Noise

14

bounds coloured blue to represent deep water, with lighter blue reflecting shallow waters.

Beaches are followed (yellow) and then two grassland biomes (light and dark green). Now,

what used to be random noise is beginning to look more like terrain from a bird’s eye

perspective. This is still just an image however, so the theory behind this is taken to a tile map.

A tile map is a tool within Unity that uses cell grids to store sprite images. These images are

generally level tiles that build the aesthetic of a level within 2-dimensional games, and can be

animated. The Perlin Noise map produced can be manipulated and amended changing the

Lacunarity and Persistence values. Lacunarity refers to the increase in frequency which in turn

increases the detail. Lacunarity over the value of 1 will increase the noise quality through every

layer. Persistence refers to the strength of which the layers of noise are reduced through every

successive octave.

 Figure 15 - Perlin Noise Generation Stage 1 Figure 14 - Perlin Noise Generation Stage 2

Figure 13 - Code Snippet Translating Noise Map to Colour Map

15

TRANSLATING NOISE TO TILE MAP

The framework for the level generation is now in place, so the next step is to we introduce a

tile map. Now instead of changing the colour of a pixel, we paint the corresponding biome tile

into the tile map grid.

To ensure that the tiles fit with their neighbours, we use Unity’s built-in “Rule-Tile” tool. These

are scriptable tiles that can change their sprite image according to which tiles are adjacent to

them.

Figure 17 - Perlin Noise Generation Stage 3

Figure 16 - Code Snippet Translating Colour Map to Tile Map

16

OPTIMISING BIOME SETTINGS

The sizes and shapes of each biome are a large part of world building. It is important that each

habitat in the game reflects their real-world counterpart. For example, beaches and coasts

typically line the meeting-point between the sea and the land as a thin strip. We need to amend

the settings of the Perlin Noise editor window to ensure the output is generated as such. The

vision of the grasslands and forests is for the lighter pastures to be expansive, and host to a

lot of bushes and shrubs, and populated with few trees. The darker forest spots are the

inverse, being smaller and containing many trees, and little in terms of small plant life.

SEEDS

A seed is a numerical value that acts as a unique ID for a level. This number can be input into

the Perlin Noise Generator to reliably reproduce the terrain if the player wishes to replay a

level (Preston, 2018). The code for the generator includes the option to randomise the seed

as well as the offsets of the noise map, which results in a completely new level upon

generation. The upper limit of seeds that can be produced is 9.9 * 10^5, and the offsets for

both x and y is 500. This means that the total possible levels that can be created is:

(9.9 * 10^5) * (500^2) = 2.49 * 10^10 potential levels

Biome Objects Found NPCs Found Height Ranges

Caves Rocks (Abundant)
Iron Ore (Few)

Slimes N/A

Deep Water N/A N/A 0

Shallow Water Clams (Rare) Crabs
Slimes

0 - 28

Beach Rocks (Few) Crabs 29 - 42

Grassland Trees (Few)
Bushes (Abundant)

Rabbits 43 - 54

Forest Trees (Abundant)
Bushes (Abundant)

Rabbits
Birds

56 - 100

Figure 18 - Table to Show Biome Data

17

ISLAND MASK

Now the generation algorithm successfully produces a

landscape with biomes, however the grid size means

that at the borders, the landscape is abruptly cut off.

We need to confine the play-space onto an island to

stop said landscape spilling out of the grid’s view. This

requires the use of a square gradient mask.

Figure 19 shows a square gradient. Its values are

subtracted from those of the noise map produced

earlier to reduce the outer edges to zero. In the game,

the value of 0 is translated to deep water, creating an

island in the centre. This is a necessity if we want our

game to have a clear and defined shape and bounds.
Figure 19 - Square Gradient (Travall, 2018)

Figure 20 - Code Snippet Showing the Square Gradient Algorithm

18

Subtracting the gradient from the generated Perlin Noise creates a squared fall-off around the

perimeter of the noise map which “pushes” the values of each pixel to zero. When it comes to

colour map, these reduced values mean that the terrain is surrounded by water, creating a

confined play-space for the game-loop to take place.

FINAL RESULTS

After producing the Perlin Noise map, subtracting the square gradient, and translating it to a

tile map we are left with a level produced solely through scripting. The shape and biome

distribution looks natural for a desert island of that size, and these organic looking results can

be reliably reproduced with the use of different seeds. Figure 22 shows how the game level

has similarities to real world islands, especially with regards to the surrounding water and

greenery.

Figure 22 - Perlin Noise Island Generation and a Real-World Desert Island (Ahmed, 2018)

Figure 21 - Step-By-Step Process to Generate a Perlin Island

19

RESOURCE DISTRIBUTION

At this moment the landscape is being produced however there are no resources within. Using

the height maps we can instantiate the correct objects for the environment to fill this empty

space. For example, if the program is placing forest tiles, there is a chance that a tree will be

placed onto said tile. Each biome will have different natural resources that can spawn.

The world generator is producing good levels each time, and the resources are issued onto

the terrain dependant on the height level. Through every height check a random number is

produced and compared to a hard coded integer. If these two variables are equal, then the

natural resource for that height level is instantiated onto the level on the same coordinate as

the tile placed before it. This will result in a level with resources completely randomly assigned

across the landscape.

Figure 23 - Snippet from Resource Distribution Program (Trees)

Figure 24 - Far and Near Shots After Resource Distribution

20

IMPLEMENTING CELLULAR AUTOMATA

As mentioned in the review of literature, cellular automata are discrete systems that populate

a grid depending on a set of rules declared by the developer. The rules that will be set will

follow the theory of “Conway’s Game of Life”, a demonstration of the growth and decline of

organic-like structures held within the grid of cells (Caballero, Hodge, and Hernandez, 2016).

DEVELOPING CELLULAR AUTOMATA

Conway’s Game of Life first

sequentially sets each cell in

the grid as either 1 or 0, which

represents its contents being

alive or dead. In the code, this

probability variable is set to

50%. With this in place, the grid

should be half populated with

alive cells, and now the

generation procedure can

begin.

Two more parameters are

declared that are known as the

birth limit and the death limit.

Figure 25 - Example of Conway's Game of Life (Bettilyon, 2018)

Figure 26 - Symmetrical Von Neumann, hexagonal and Moore

neighbourhoods in two dimensions (García-Morales, 2012)

21

The user developing the CA can manipulate the values of these from 1-8 to produce different

results on the grid. There are two significant “neighbourhoods” that can be used within this

section of the algorithm, which check different cells in proximity. The first is the “Moore

Neighbourhood”, where the adjoining cells are the only deciding factors The second is the

“Von Neumann Neighbourhood”, which contrasts against neighbours in contact with the

vertices. This project will use Von Neumann’s neighbourhood. Each active (alive) cell will have

its dead neighbours checked and contrasted against the death limit. If the number is lower

than the parameter set, the cell will die. All inactive (dead) cells are contrasted against the

birth limit, and if there are more alive neighbours than there dead, the cell will become active

(Kowalski, 2020). This process is iterated upon multiple times and with each loop, the cave

system will begin to take shape. In this simulation, the perfect number of loops was discovered

to be 4.

Figure 27 - Code Snippet for Birth and Death Rates

22

Just like the implementation of Perlin Noise, we are substituting this theoretical grid for a tile

map. The state of the cell decides whether it will be a wall tile or a floor tile. Wall tiles are given

a box collider, so the player is limited to walk through the open areas only.

The examples below show the functionality of the birth and death rates. Through each

iteration, every cell is re-evaluated following the declared rules and over time, forms the level

on which the player will have their experience. Just like the Overworld, this scene will be

populated with resources for the player to harvest.

Figure 29 - CA Iteration 1 Figure 30 - CA Iteration 2

Figure 28 - CA Iteration 3 Figure 31 - CA Iteration 4

23

With the algorithm working up to standard, all that remains is to create an entry point between

the overworld and the caves. In “hosTILE”, these take the form of a small, raised bit of land

with an entrance, and a stone staircase. Being within range of these objects will prompt the

player to interact with them, which then sets their new position to somewhere else depending

on whether they are entering or leaving the cave. These objects are placed into the resource

allocation section of their respective algorithms with instantiation rules and are therefore

randomly placed into their environment.

Figure 32 - Example of CA and Resource Population

24

IMPLEMENTING THE PLAYER

The player avatar is the vessel through which the user enters the magic circle and interacts

within the game’s mechanics. The player has some strict requirements that need to be met for

them to survive in the game:

• The player must drink enough water. The water bar

cannot fall below zero or the health bar will reduce

drastically and constantly. To stay hydrated, the player

must visit the shallow water to drink, or kill slimes that drop

water bottles.

• The player must stay healthy. Taking damage from

enemies will whittle down the player’s health until it

reaches zero, where the game will end. To keep the health

up, the player is required to eat food.

• The player should harvest the resources and craft better

equipment that will ease the process of gaining more

resources / escaping. Wood, rope, iron, and pearls are the

four constituents of the crafting system and combining

them in different ways will produce different results.

PLAYER CONTROLLER

The player controller is a series of scripts that

governs how the player interacts with the world.

This ranges from the movement of the avatar,

the handling of animations and game mechanics

(i.e., attacking, picking up items, etc). and

transporting the player from the overworld to the

caves and back. The player controller also keeps

a track of the state of the player, like their water

and health values.

MOVEMENT

The player avatar can move in 8 directions.

When doing so, the player controller will decide

which animation to play, and apply a rigid body

force onto the player object to create the illusion

of movement (this also applies to all AI agents

with movement capabilities). Having a collider

component attached to the player also means

that they are confined to the play-space and will

collide with other objects within the scene.

Figure 33 - hosTILE Player Character

Figure 34 - Code Snippet Showing Player Vitals and

Animation Conditions

25

INTERACTION

With a variety of AI and items dotted throughout the level, the player has the ability to swing

their weapon (through keyboard input) within range to get an effect. Resources will break and

drop a collectible, and AI agents will take damage or drop food. Picking up items has been

implemented using a circular trigger that encompasses an area around the player paired with

a script that destroys all (obtainable) objects within this area and adds them into their inventory

(details on the implementation of the inventory can be found in the Game Mechanics section

(below)).

Figure 35 - Code Snippet to Pick Up Wood

26

GAMEPLAY MECHANICS

ITEMS

FOOD

Food items are acquired through harvesting specific natural resources or killing the NPC

animals that roam the play-space. Vegetables are abundant but recover little health, and meat

is rarer and recovers more health than vegetables. They have the added challenge however

because you will need to chase / defeat the AI it is harvested from.

INVENTORY

By using a script attached to the game UI container, we can connect integer counters to UI

text elements. Then, we create another script that is attached to the collectable game object,

which destroys it upon interaction and increments the integer counter. The player can view

the contents of their inventory through the game UI panel on the bottom-left of the screen.

The figure above shows hosTILE’s UI. It is placed on the bottom right side of the player’s

screen and provides the player with all the necessary information to allow them to understand

the state of play or make informed decisions.

Coordinates can be utilised to return to areas such as builds, cave entrances or otherwise

significant locations.

The blue bar represents the avatar’s hydration, and the red bar represents their health. The

water bar will be constantly draining at a steady pace, and the health bar is only reduced upon

taking damage or when the water bar runs out.

Pressing Q or E will scroll through the game mode, allowing multiple uses for the same

controls.

Figure 36 - hosTILE Game HUD

27

Figure 37 - In-Game Screenshot of the Inventory Menu

Crafting System

Game Objectives

Island Map

28

CRAFTING

The challenge of creating a crafting menu was solved using 4-Dimensional integer arrays. The

crafting system within the game will make use of 4 items used in different quantities to produce

different results. The constituents being wood, rope, iron, and pearl. In the method devised for

the game, the quantity of each respective item reflects coordinate points in the array. If the

cell contains a number greater than 0, then an item can be created. The element in the array

will have an integer number which represents the item to be made, so once a valid recipe has

been entered, the script will loop through the numbers until there is a match, where it will

subsequently instantiate said object onto the level. For example, to make a storage chest, the

requirements are 8 wood, 0 pearls and 1 iron. [8, 0, 1] in the array contains the number 1, and

the number 1 in the switch statement will find the storage chest game object and place it into

the scene.

Figure 38 - Code Snippet for Crafting

29

Although this approach appears to be costly from an outward perspective, there is no need to

cycle through every single element. Changing an item’s quantity causes the script to reference

the coordinate directly, and further code blocks are only executed when a valid recipe is

entered.

The below table shows the items that can be crafted in the game, alongside the recipe required

to make them.

CRAFTING MATERIALS

Crafting materials have no use until partnered with other materials. The result of crafting can
be a second stage crafting material, or a tool. If the player wishes to complete the game, they
will need to accumulate resources and craft the items necessary to build the boat. Within the
game, there are four crafting resources:

Figure 39 - Table Showing Crafting Resources and Locations

Resource Found

Wood Trees

Iron Rocks, Mineral Deposits

Rope Plants

Pearls Clams

Item Use Recipe (Wood, Rope, Iron, Pearl)

Bow Long Range Attacks 3, 3, 1, 0

Arrow Bow Ammunition 5, 1, 1, 0

Wall Building Item 5, 0, 0, 0

Looking Glass Zoom In and Out 0, 0, 3, 2

Deck Boat Part 10, 5, 3, 0

Rudder Boat Part 8, 1, 5, 0

Sail Boat Part 5, 2, 3, 0

Compass Boat Part 1, 0, 3, 1

Figure 40 - Table Showing Craftable Items and Their Uses

Figure 41 - In-Game Look at the Crafting Menu

30

BUILDING

With such an open world, the game invites creativity. Adding a building mechanic allows the

player to create their own buildings, form boundaries to keep enemies away their territory.

Pressing Q will change the game mode and permit the player to place tiles wherever they click

on screen. Using this mechanic however means that the player cannot attack, mine, or use

consumables, leaving them vulnerable. The items that can be used in the build mode are

crafted. The building system works by placing tiles where the player clicks. These tiles are on

their own grid as to not affect the rule tiles of the overworld, and the selector is also on a

separate grid. The selector is removed from the tile once the mouse goes out of the cell and

is then instantiated onto the new cell. If the selector is being held above an already taken slot,

it will change to a red cross and not allow the player to use a block.

Figure 42 - Code Snippet for Highlighting Tile Cells

Figure 43 - Screenshot of Build Mechanic

31

ARTIFICIAL INTELLIGENCE

As mentioned at the beginning of this paper, the game will be populated with artificially

intelligent units in the form of animals and monsters. These units will have similar functionality

to one another; however, each individual class will have its own unique behavioural pattern to

add interactive diversity to the game’s ecosystem.

Figure 44 - Table to Show AI behaviours

ARTIFICIAL INTELLIGENCE MODEL

Typical artificial intelligence models are comprised of three sections: strategy, decision

making, and movement (Jaokar, 2019). Each section tackles specific problems for the AI

object, and when assembled, result in the action taken by the agent. These sections are

influenced by the world of the game, for example, if a passive, flight response AI is in close

proximity to a threat (i.e., the player or a predator), the decision making section will determine

the best direction to attempt an escape. This assessment will then persuade the movement

unit, which will apply the correct physics and animation to perform motion on-screen away

from the threat. Figure 45 shows this model. Within the context of the game, strategy AI is not

relevant, as it refers to the tactics used by board game agents and the coordination of teams

of units. The units in the game will be individual and react to their own scenarios.

Species Traits Aggression

Crab Sideways movement, no response Passive

Ducks Four directional movement, no response, herbivore Passive

Rabbits Four directional movement, flight response, herbivore Passive

Slime Four directional movement, fight response, predator Aggressive

Figure 45 - The AI Model (Millington and Funge, 2009)

32

ALGORITHMS AND REPRESENTATIONS

The Algorithms are the code that goes behind the Unity game objects that performs the

relevant calculations and response, however this alone is not enough to create fluid, seemingly

intelligent AI. There needs to be a context to the game world as well so the unit can perceive

its surroundings. Going back to our previous example of the passive, flight response AI, we

need to be able to identify the threats as they enter the animal’s field of view. A polygon collider

set as a trigger and being placed in front of the AI acts like their field of view. If the trigger is

prompted, the code will retrieve the tag of the incoming collider and begin the motions of

reaction if the tag corresponds to a threat. This way the unit reacts only to the appropriate

collider intersections. The game object can be marked as such, and the algorithm can obtain

its transform data for use with its escape calculations.

IMPLEMENTATION OF AI

It is important to note that there are two types of AI: deterministic and non-deterministic.

Deterministic AI refers to those whose actions can be exactly predicted through the

environment, excluding the participation of randomness (Robins, 2020). Non-deterministic

(otherwise referred to as stochastic) AI can provide multiple outcomes based on the same

input, meaning that it is not possible to accurately predict an agent’s response (What is a Non-

Deterministic Algorithm? - Definition from Techopedia, 2019). The AI used within hosTILE will

follow the design of basic non-deterministic AI. The stochastic behaviours are derived from

the usage of many randomly generated numbers used to set the target positions, emulating a

real animal roaming.

PASSIVE AGENTS

Passive Agents within the game do not come into conflict with their

neighbouring NPCs. Some do not react to hostile scenarios, and

aimlessly wander their ecosystem, whilst others actively avoid

threats by moving directly away until the danger is out of their view.

Herbivorous AI will target and approach vegetables that the player

does not pick up, allowing traps to be set. If these animals are on

the drop for long enough, they will eat it.
Figure 46 - Passive Crab

Agent

33

AGGRESSIVE AGENTS

Aggressive agents will energetically move around their environment in

search of prey; be it the other wildlife or the player. They lock onto said

target using a circle trigger that encompasses their sprite model. The

first object to enter this circle will have their transform positions taken

and they will make a move for that location until they either reach it or

the target escapes their view.

Figure 48 - Code Snippet Showing How the Random Position was Calculated

Figure 47 - Code Snippet Showing Agent Movement to a New Position

Figure 49 - Slime Enemy

34

Figure 50 - Code Snippet of Predator Movement

35

MENUS

When first booting up a game the first thing the player is introduced to is the main menu. It is

a key constituent of the game that allows the player to do a variety of things such as play the

game, change settings, or exit.

This menu scene was created to fit that aesthetic of the project at hand. The below image

(Figure 51) is the design for the main menu of the game. It shows a desert island with animated

water washing up onto the beach. The left side of the island has the three options ready for

selection, whilst on the right we have some rocks and a raised bit of land with some greenery.

 Although the layout of the buttons is slightly different to those shown in the case study,

the menu provides the player with insight into the design and aesthetic of the game as well as

remaining simple and readable.

The settings button expands to show video, audio, and controls options which, themselves

open to display a variety of amendable selections. Making a selection in these menus will

make a change to the game when play is pressed, such as lowering the volume of particular

sound groups, entering full screen and changing the image resolutions. There is a tutorial

button which will lead the player to a smaller scale island, generated using the developed PCG

tool as well as developer additions such as noticeboards that grant information about the

gameplay and how the mechanics work.

Figure 51 - hosTILE Main Menu

36

SOUNDTRACK

MUSIC

To fit the writer’s vision, the music for hostile was created especially for the game. Taking

heavy inspiration nature documentaries and other nature themed medias, the soundtrack

makes use of ambient sounds that suitably accompanies the gameplay without distracting the

player from the game itself. To add a sense of loneliness the music is sombre, to reflect the

player’s avatar being stranded. The order of the tracks will be randomised, so the player is

greeted with different tracks upon beginning each game.

This is a music player program. It is attached to an empty object and is used to play the

soundtrack in a shuffled order. Within the editor, the created tracks can be placed into the

array. Once an audio clip has been selected by the script, it is placed into the audio source

component of the music player, which plays on awake. Now during runtime, the music tracks

will be played randomly.

SOUND EFFECTS AND AUDIO GROUPS

With the general aesthetic of the game, the obtained sound effect clips are short and to the

point. Their job is to add sensation and player feedback when an action is taken. For

example, hitting a rock will play a brief “clunk” to emulate the real world event. HUD and UI

interactions also produce feedback as a way of confirming selections. All sounds were

sourced from an online library of royalty free audio clips. These assets are credited in the

appendix. All games have a division between music, sound effects, and cinematic noises,

which can be amended in the sounds page in both the pause and main menu screens. This

allows for these specific sound groups to be amplified or reduced to satisfy the player’s

preferences. This is done through creating audio groups and allowing a script to amend the

volumes.

37

Figure 52 - Code Snippet for Audio Settings

38

PROCEDURAL DEMONSTRATIONS

To show how each variable effects the outcome of a generated level, two scenes have been

made that allows the user to input their own values to demonstrate the procedural

techniques present within the portfolio. By using UI sliders, the user can explore a variation

of settings to better understand these techniques. Some values are within boundaries,

because straying too far from these values will have a negative effect on the outcome.

Figure 53 - Perlin Demo Scene

Figure 54 - Cellular Automata Demo Scene

39

CRITICAL REFLECTIONS

This section encompasses the writer’s and 3rd party’s judgement on the quality of work

produced throughout this paper. It will be used as a means of determining the project’s

strengths and weaknesses, as well as a feed-forward tool for the writer regarding future

endeavours in similar fields of game development.

TESTING

A build of the game was sent to work colleagues as well as friends of the writer. These

participants have a range of experience with games, and therefore notice different matters

that they bring forward in the feedback. A questionnaire was formulated asking specific

questions about the game and the user’s experience. The following sections encompass the

third-party user feedback to constructively measure the success of the game.

FEEDBACK

Overall, the feedback received was positive. Responses enjoyed or were content with the

gameplay and music. Many participants also noted that the aesthetic was a perfect choice for

the genre and style of the game and enjoyed the aspect of freedom of exploration. This is an

indicator that at this stage of development the game was on track to meet the writer’s original

vision. On top of this, the gameplay mechanics have been commended for being fun and the

controls were easy to grasp by all users.

How Would You Rate Your Experience on a Scale of 1 -

10?

5 6 7 8 9

Figure 55 - Chart to Show Audience Reception for the Alpha

40

Regarding the level generation side, responses indicated that while the environments

produced were fun to explore and play on, there was a distinct lack of diversity in the biomes.

This has presented the conclusion that adding more mechanics to interact with the

environment were needed. This led to the inclusion of treasure chests that could be uncovered

on the beaches. It was clear according to the replies that the game had a similar look and feel

to Minecraft and Terraria, which is a positive indication that the game has a solid structure and

game flow.

Asking the participants about the improvements they wished to see, many brought up bugs

and glitches that they came across through their experience. These have been considered

and rectified for the final product. In addition, players wished to have a bit more support with

how the game worked, for example what the resources are for, as well as a clearer indication

of the health and water levels (“Explanation what some of the materials I was picking up were

for. Numbers on health bars to indicate exactly how much of each thing I had left”). To improve

these, float values have been added to the bars on the UI to better inform the player on the

state of the avatar.

IMPROVEMENTS

Graphical breaks are common in this terrain generation model due to the sprite sheet used for

the landscapes. Single divot pieces were not included, and so a single tile of any type reverted

to its default sprite image as set up in the rule tiles tool. The rarity of these events has been

reduced by adjusting the noise, lacunarity and persistence of the level, however it is not

guaranteed that this will entirely fix the issue. This issue is only prominent in this project

because the tile set utilised does not have the correct tiles to fit into the grid cell.

How Would You Rate the Level Generation on a Scale

of 1 - 10?

6 7 8 9

Figure 56 - Chart to Show Audience Reception of the Level Generation

41

OUTCOMES

Through the work put into this project, a fully finished survival game has been created. The

levels are completely procedural without any human intervention and provides 20-25 minutes

of play time.

EVALUATION

LIMITATIONS

The largest limitation for this project was having access to university computers. Due to the

nature of Unity projects and the computing complexity of both cellular automata and Perlin

Noise meant that my computer was not a reliable machine to work on. Connecting remotely

to a campus computer worked to an extent, but the latency between action and reaction meant

that the rate of work was significantly slowed when off-campus. On top of this, audio and video

feeds were very slow, and as such testing the game between builds was made difficult.

As stated previously, the graphics were sourced from a third party (acknowledged in the

appendix) and so I had no part in its creation. I believe that the aesthetic of said graphics were

well-suited to the game, but it was missing a few tiles that would make the levels produced

look smoother. Access to more complex tile sets would result in the removal of these graphical

errors.

EDUCATIONAL TAKE-AWAYS

This project has encompassed all aspects of the development cycle of a small-scale indie

game. The processes tackled through each milestone has stretched the writer and made them

read into a wide range of areas so that the quality and performance of the game is as clean

as possible. PCG are huge topics in today’s game development scene, and the research and

implementation of such allows the writer to recreate and even extend these practices in future

ventures.

FURTHER IMPROVEMENTS

The most striking area that I believe requires better implementation is the resource allocation

algorithm. By using random numbers to determine when and where an object is placed means

that the one-off items (i.e the cave entrance) are more likely to be instantiated in the early

coordinates of the grid. The use of nested loops to sequentially move from one cell to another

means that it always begins at the bottom left and finishes at the bottom right. These single

objects are therefore more likely to spawn at the beginning due to the bias of probability of

42

their inclusion, allowing for reliable predictions as to their whereabouts. I believe that going

down the route of using ray casting for these objects would be more suited to better laying

down these pieces as we can send a singular ray out to a completely random position on the

level, check if it is a valid location, then placing it down. Not only would this aid in their

distribution, but computationally it would save memory as it is not iteratively determining

whether each cell is legal for use or not.

For upcoming projects, I wish to better develop my time-handling skills. The project was a

large undertaking, and it would have been a better idea to focus solely on the PCG side instead

of creating a full-fledged game. Management of time is something that I have enhanced during

my time acting on this dissertation, and I have learned to not take on too much when given a

time frame to complete a task.

FINAL COMMENTS

This project is not without flaw, though I am extremely happy with the outcome. Perlin noise

has always taken my interest, so researching and implementing on of its many uses has been

a fulfilling journey. The same goes for cellular automata. Procedural generation as a field of

research is such a powerful tool for games developers that educating myself and getting first-

hand experience with it opens many doors in my future developments. As a developer with

sparse artistic knowledge and experience, PCG is a shortcut to produce large levels without

the need to create them by hand. On top of this, working solo on a project of this magnitude

has boosted my confidence in areas that I previously felt I was no experienced in.

Word Count: 9910 – (1254 + 538) = 8210 words

43

SCREENSHOTS

Figure 57 - Screenshot of hosTILE Gameplay

Figure 59 - Perlin Island Example 1 Figure 58 - Perlin Island Example 2

44

Figure 60 – Rule Tiles Setup

Figure 61 - Code Snippet to Generate Shallow Water Biome and Resources

45

Figure 62 - Code Snippet to Generate Beach Biome and resources

46

Figure 63 - Code Snippet to Generate Grassland Biome and Resources

47

Figure 65 - Code Snippet Showing the Cellular Automata Resource Generation

Figure 64 - Code Snippet to Show AI Spawner Functionality

48

FEEDBACK ANSWERS

0 2 4 6 8 10 12

Yes

No

Does the Aesthetic and Design of the Levels Suit the

Genre?

Figure 67 - Table to Show Opinions on the Game's Aesthetic Fitting the Genre's Conventional Image

0 1 2 3 4 5 6 7 8 9

Minecraft

Terraria

Don't Starve

Other

Which Other Game Does this Project Remind you of?

Figure 66 - Table to Show Which Games hosTILE Resembles

49

Would You Say that the Island(s)' Size was Too Big, Too

Small, or Perfect?

Perfect Too Large Too Small

Figure 68 - Table to Show the Opinion on the Size of the Island(s)

50

REFERENCES

BIT-101. 2022. Perlin vs. Simplex. [online] Available at: <https://www.bit-
101.com/blog/2021/07/perlin-vs-simplex/> [Accessed 3 February 2022].

Brill, F., 1997. Perception and Action in a Dynamic Three-Dimensional World, p17.

Caballero, L., Hodge, B. and Hernandez, S., 2016. Conway's “Game of Life” and the
Epigenetic Principle. Frontiers in Cellular and Infection Microbiology, 6(1), p.1.

Cook, M., Colton, S., Gow, J. and Smith, G., 2019. General Analytical Techniques For
Parameter-Based Procedural Content Generators. [online] Ieee-cog.org. Available at:
<https://ieee-cog.org/2019/papers/paper_84.pdf> [Accessed 22 January 2022].

ebookreading. 2022. The Pros and Cons of Procedural Generation. [online] Available at:
<https://ebookreading.net/view/book/EB9781785886713_107.html> [Accessed 5 May 2022].

García-Morales, V., 2012. Symmetrical Von Neumann, hexagonal and Moore neighborhoods
in two dimensions. [online] ResearchGate. Available at:
<https://www.researchgate.net/figure/Symmetrical-Von-Neumann-hexagonal-and-Moore-
neighborhoods-in-two-dimensions-A_fig6_257191841> [Accessed 16 May 2022].

Gonzalez Vivo, P. and Lowe, J., 2022. The Book of Shaders. [online] The Book of Shaders.
Available at: <https://thebookofshaders.com/12/> [Accessed 8 February 2022].

Green, S., 2022. Chapter 26. Implementing Improved Perlin Noise. [online] NVIDIA Developer.
Available at: <https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-
rendering/chapter-26-implementing-improved-perlin-noise> [Accessed 21 January 2022].

Himite, B., 2021. Replicating Minecraft World Generation in Python. [online] Medium.
Available at: <https://towardsdatascience.com/replicating-minecraft-world-generation-in-
python-1b491bc9b9a4> [Accessed 22 January 2022].

Jaokar, A., 2019. 3 Main Approaches to Machine Learning Models - KDnuggets. [online]
KDnuggets. Available at: <https://www.kdnuggets.com/2019/06/main-approaches-machine-
learning-models.html> [Accessed 26 March 2022].

51

Kowalski, K., 2020. Game Development Tutorial | Cellular Automata and Procedural Map
Generation. [online] Youtube.com. Available at:
<https://www.youtube.com/watch?v=slTEz6555Ts> [Accessed 25 March 2022].

Linguazza.com. 2014. SURVIVAL GAME definition. [online] Available at:
<https://linguazza.com/definition/survival+game> [Accessed 5 May 2022].

Millington, I. and Funge, J., 2009. Artificial intelligence for games. Elsevier inc., p.9.

Muñoz-Avila, H., n.d. Meaningful Play and Game Design. [online] studylib.net. Available at:
<https://studylib.net/doc/9249708/meaningful-play-and-game-design> [Accessed 27 March
2022].

Parberry, I., 2014. Designer Worlds: Procedural Generation of Infinite Terrain from Real-World
Elevation Data. [online] jcgt.org. Available at:
<https://jcgt.org/published/0003/01/04/paper.pdf> [Accessed 21 January 2022].

Pedersen, K., 2014. Procedural Level Generation in Games using a Cellular Automaton: Part
1. [online] raywenderlich.com. Available at: <https://www.raywenderlich.com/2425-
procedural-level-generation-in-games-using-a-cellular-automaton-part-1> [Accessed 22
January 2022].

Plarium.com. 2022. Survival Games: A Guide to the Classic Gaming Genre. [online] Available
at: <https://plarium.com/en/blog/survival-games/> [Accessed 12 February 2022].

Plato.stanford.edu. 2017. Cellular Automata (Stanford Encyclopedia of Philosophy). [online]
Available at: <https://plato.stanford.edu/entries/cellular-automata/> [Accessed 22 January
2022].

Robins, A., 2020. Stochastic vs Deterministic Models: Understand the Pros and Cons. [online]
Blog.ev.uk. Available at: <https://blog.ev.uk/stochastic-vs-deterministic-models-understand-
the-pros-and-cons> [Accessed 27 March 2022].

Scher, Y., 2017. Playing with Perlin Noise: Generating Realistic Archipelagos. [online]
Medium. Available at: <https://medium.com/@yvanscher/playing-with-perlin-noise-
generating-realistic-archipelagos-b59f004d8401> [Accessed 22 January 2022].

52

Schmidt, A., 2022. Random Walks. [online] Mit.edu. Available at:
<https://www.mit.edu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/random.htm>
[Accessed 12 February 2022].

Sylvester, T., 2013. Designing Games. [online] O’Reilly Online Learning. Available at:
<https://www.oreilly.com/library/view/designing-games/9781449338015/ch01.html>
[Accessed 19 May 2022].

Techopedia.com. 2019. What is a Non-Deterministic Algorithm? - Definition from Techopedia.
[online] Available at: <https://www.techopedia.com/definition/24618/non-deterministic-
algorithm> [Accessed 27 March 2022].

unwttng.com. 2018. Procedural Generation - How Does It Work? | The website of Juniper
Preston, Computerer. [online] Available at: <https://unwttng.com/how-does-procedural-
generation-work-random-noise> [Accessed 24 March 2022].

Wolfram, S., 2002. Historical Notes from Stephen Wolfram's A New Kind of Science. [online]
Wolframscience.com. Available at: <https://www.wolframscience.com/reference/notes/876b>
[Accessed 22 January 2022].

World-machine.com. 2022. Device Reference. [online] Available at: <http://www.world-
machine.com/learn.php?page=devref> [Accessed 18 March 2022].

53

APPENDIX

THIRD PARTY ASSETS

GRAPHICAL ASSETS

TILE SET

https://pita.itch.io/rpg-dungeon-tileset

https://pita.itch.io/rpg-overworld-tileset

https://pita.itch.io/rpg-village-tileset

ITEM SPRITES AND ANIMALS

https://szadiart.itch.io/craftland

https://elthen.itch.io/2d-pixel-art-crab-sprites

SOUND EFFECTS

https://freesound.org/people/DrMaysta/sounds/418509/

https://freesound.org/people/Q.K./sounds/56271/

https://freesound.org/people/SilverIllusionist/sounds/411178/

https://freesound.org/people/Raclure/sounds/483598/

https://freesound.org/people/JanKoehl/sounds/85581/

https://freesound.org/people/ultraaxvii/sounds/591152/

https://freesound.org/people/igroglaz/sounds/593875/

https://freesound.org/people/zimbot/sounds/244490/

https://freesound.org/people/XxChr0nosxX/sounds/268227/

https://freesound.org/people/deleted_user_2104797/sounds/164678/

https://freesound.org/people/jorickhoofd/sounds/161593/

https://freesound.org/people/super8ude/sounds/442538/

https://freesound.org/people/Debsound/sounds/168822/

https://freesound.org/people/zimbot/sounds/122126/

https://freesound.org/people/Flying_Deer_Fx/sounds/369010/

https://freesound.org/people/MadPanCake/sounds/567849/

https://pita.itch.io/rpg-dungeon-tileset
https://pita.itch.io/rpg-overworld-tileset
https://pita.itch.io/rpg-village-tileset

