
Artificial Intelligence – Report s5103250

Task 1

Task 1 is code-based and can be found in the ‘Astar’ Visual Studio Project.

Task 2

Pathfinding in video games can use a multitude of approaches in order for an agent to traverse from

one section of the play space to another. A good pathfinding algorithm should be able to efficiently

calculate the shortest or least costly path between these two points without being too draining on

the CPU. A* is very commonly used due to these factors, but also because it can be used in wider

scenarios. There are three key types of learning strategies in machine learning: Supervised,

Unsupervised and Reinforced Learning. This segment of research will evaluate three methods of

pathfinding algorithm: Artificial Neural Networks (ANNs), Reinforcement Learning (RL), and Genetic

Algorithms (GA), all of which use a different learning approach.

An Artificial Neural Network is a data processing method in which the code is structured to act like

the human nervous system. They are a collection of singular neurons (perceptron) that are

interconnected and layered that can be trained to recognised patterns within inputs [a1]. One of the

most common cases of this is their use within medical examinations; they can detect potential

anomalies within the body. ANNs use a learning rule called back-propagation, which circulates error

back to the neurons to adjust their respective weights. Once trained, ANNs have the ability to deal

with non-linear data, its speciality is with large number inputs [a2]. This means that ANNs

themselves are not in fact too useful in pathfinding but are instead more efficient when it comes to

classification problems. On top of this, ANNs are very computationally expensive O(n5) [a3]

RL is an unsupervised learning algorithm in which an agent learns just as a human would; through

environmental interactions, i.e. learning by making and correcting mistakes. This means that they

learn implicitly and can be used to solve very complex problems that cannot be solved through the

use of conventional techniques [r1]. Most commonly, RL is applied to robotics, where an agent can

be trained to perform a specific task. [r2] shows Reinforcement Learning being used to train a

simulated car how to drive alongside multiple other examples of the applications of RL. Reaching an

end goal is propagated backwards to mark the decisions made across that path, with each state

being evaluated as either a reward or punishment. For a fixed start and end point, such as the ones

provided in Task 1, Reinforcement learning has an advantage as it can exploit the data it has

accumulated thus far. In terms of exploration, RL explicitly allows the probability of choosing new

paths and actions.

Genetic Algorithms are a sub-strand of evolutionary algorithm based on Darwin’s Theory of the same

name. GA aims to find the optimal (or close to optimal) solutions to a problem. The objective (in this

case, pathfinding) is discovered using ‘mutations’ in the agent that occurs every generation. For

example, a string of binary digits can be used to direct the agent, (where 01 = left, 10 = right, 11 = up

and 00 = down) and this can be used to evaluate its ‘fitness’; how close it gets to the end goal [g1].

The next generation of agents will be the offspring of two of the previous agents and will replace the

weaker individuals. This can be a very costly process and may take a long time until optimum

offspring are produced that can heuristically reach the desired destination. In society today, GA has

use almost everywhere, from Finance and Economics to music. “Genetic Algorithms (GA) seems to

be a suitable approach for generating musical compositions. Combination of genetic operators

(mutation, selection and crossover) in some ways simulates the innovative process (as real

composing is), enabling continuous ‘improvement’ of the obtained results [(A GENETIC

ALGORITHM FOR COMPOSING MUSIC, 2021)[G2]].

Out of the three techniques, I believe using Genetic Algorithms will be the best option. Although

costly, through each generation agents get closer to finding the optimal solution.

Task 3

Task 3 is code-based and can be found in the ‘GA Pathfinding’ Visual Studio Project.

Task 4

Although two separate programs can process the same input and release the same output, the

methods in which they process the information is vastly different. Take GA and A-Star for example.

My programs use the same text files and produce the same results, but their codes are not the

same; so, which is the better code? Efficiency is the most vital aspect when it comes to comparing

two programs. It is defined by reliability, speed and the coding methodology to give one the verdict

over the other. To compare the time of both algorithms, I will need an in-engine method. The

‘Stopwatch’ property held within the “System.Diagnostics” namespace [t1] is perfect. This keeps an

accurate time of how long it takes to find the finish. Using a stopwatch in real-time is incredibly

inaccurate and would not be good practise. We can compare CPU usage from within the

“diagnostics” window during runtime.

Before testing, I believe that A-Star will remain the greater pathfinding algorithm. Its use of

cost to reliably calculate its path means that it quickly and reliably reaches the end with the most

efficient route. Genetic Algorithm is incredibly strong, but the nature of breeding the chromosomes

over a multitude of generations means that although it will eventually find the route, this process is

very costly, both timewise and process-wise.

Task 5

Figure 2: Time Elapsed (A-Star) Figure 1: Time Elapsed Genetic Algorithm)

As shown in Figure 1 and 2, the A-Star Algorithm

finishes its processes in 0.139s, whilst GA took 19.9s.

This proves outright that A-Star is the superior

algorithm when it comes to speed. On the CPU usage

side, A-Star uses 8MB of Process Memory at the end of

the process (see fig.3) and GA uses 10 (fig.4).

In conclusion, A-Star is the greater pathfinding

Algorithm. By calculating the cost of moving from one

node to another, A-Star can make decisions that lead it

towards the end goal without the use of iterative

generations that “guesses” where it should travel. This

means that only one agent is required to solve the

maze, in comparison to the 4 agents in GA that are

constantly testing their path and being crossed over

with one another.

References

[a1] Investopedia. 2021. Artificial Neural Network (ANN). [online] Available at:

<https://www.investopedia.com/terms/a/artificial-neural-networks-ann.asp> [Accessed 12 January

2021].

[a2] Subscription.packtpub.com. 2021. Pros And Cons Of Neural Networks. [online] Available at:

<https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781788397872/1/ch01

lvl1sec27/pros-and-cons-of-neural-networks> [Accessed 9 January 2021].

[a3] Fredenslund, K., 2021. Computational Complexity Of Neural Networks. [online] Kasperfred.

Available at: <https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-

of-neural-networks> [Accessed 9 January 2021].

[r1] Pythonista Planet. 2021. Pros And Cons Of Reinforcement Learning | Pythonista Planet.

[online] Available at: <https://www.pythonistaplanet.com/pros-and-cons-of-reinforcement-learning/>

[Accessed 9 January 2021].

[r2] neptune.ai. 2021. 10 Real-Life Applications Of Reinforcement Learning - Neptune.Ai. [online]

Available at: <https://neptune.ai/blog/reinforcement-learning-applications> [Accessed 12 January

2021].

[g1] Medium. 2021. Introduction To Genetic Algorithms — Including Example Code. [online]

Available at: <https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-

code-e396e98d8bf3> [Accessed 12 January 2021].

[g2] 2021. A GENETIC ALGORITHM FOR COMPOSING MUSIC. [ebook] Banka Luka: Dragan

MATIĆ, p.158. Available at: <http://elib.mi.sanu.ac.rs/files/journals/yjor/39/yujorn39p157-177.pdf>

[Accessed 12 January 2021].

[t1] Docs.microsoft.com. 2021. Stopwatch.Elapsed Property (System.Diagnostics). [online]

Available at: <https://docs.microsoft.com/en-

us/dotnet/api/system.diagnostics.stopwatch.elapsed?view=net-5.0> [Accessed 13 January 2021].

Fig.3 A-Star CPU

usage

Fig.4 Genetic

Algorithm CPU usage

